On a Sobolev Inequality with Remainder Terms

نویسندگان

  • GUOZHEN LU
  • JUNCHENG WEI
چکیده

In this note we consider the following Sobolev inequality

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remainder Terms in the Fractional Sobolev Inequality

We show that the fractional Sobolev inequality for the embedding H̊ s 2 (R ) →֒ L 2N N−s (R ), s ∈ (0, N) can be sharpened by adding a remainder term proportional to the distance to the set of optimizers. As a corollary, we derive the existence of a remainder term in the weak L N N−s -norm for functions supported in a domain of finite measure. Our results generalize earlier work for the non-fract...

متن کامل

A Hardy Inequality with Remainder Terms in the Heisenberg Group and the Weighted Eigenvalue Problem

Based on properties of vector fields, we prove Hardy inequalities with remainder terms in the Heisenberg group and a compact embedding in weighted Sobolev spaces. The best constants in Hardy inequalities are determined. Then we discuss the existence of solutions for the nonlinear eigenvalue problems in the Heisenberg group with weights for the psub-Laplacian. The asymptotic behaviour, simplicit...

متن کامل

Positive Solutions to a Linearly Perturbed Critical Growth Biharmonic Problem

Existence and nonexistence results for positive solutions to a linearly perturbed critical growth biharmonic problem under Steklov boundary conditions, are determined. Furthermore, by investigating the critical dimensions for this problem, a Sobolev inequality with remainder terms, of both interior and boundary type, is deduced.

متن کامل

The Sharp Sobolev Inequality in Quantitative Form

A quantitative version of the sharp Sobolev inequality in W (R), 1 < p < n, is established with a remainder term involving the distance from extremals.

متن کامل

Critical dimensions and higher order Sobolev inequalities with remainder terms ∗

Pucci and Serrin [21] conjecture that certain space dimensions behave “critically” in a semilinear polyharmonic eigenvalue problem. Up to now only a considerably weakened version of this conjecture could be shown. We prove that exactly in these dimensions an embedding inequality for higher order Sobolev spaces on bounded domains with an optimal embedding constant may be improved by adding a “li...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007